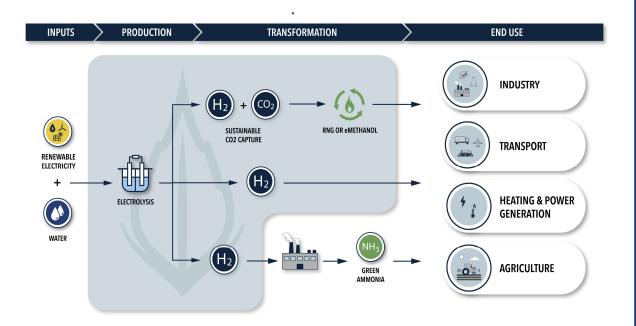


Producing Low Carbon Fuels Through Electrolysis

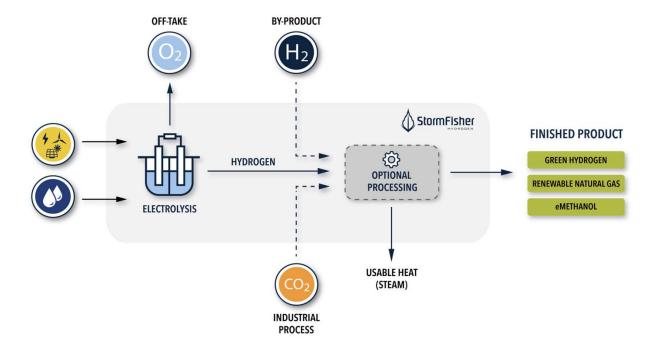


We develop, own, and operate renewable hydrogen-based clean fuel production facilities

- Leveraging our decades of experience in renewable energy, we help corporations, utilities, and governments achieve net zero emissions through the production of low carbon fuels for hard to decarbonize sectors.
 - Electrolysis represents a replicable approach to producing low carbon fuels at scale
- We support a low-carbon future through the production of economical clean hydrogen underpinned by renewable electricity and an offtake strategy that spans a variety of end markets including marine, transport, industrial, and utility.
 - These sectors provide a stable existing market without the need for the build out of a supply chain infrastructure.

eFuels – H2 Derived End Products

Electrolysis represents a replicable approach to producing low carbon fuels at scale



StormFisher has evaluated various decarbonization pathways for hydrogen, matching low carbon hydrogen-based fuels with hard-to-abate applications

- Traditional biofuel approaches result in feedstock constraints limiting scale and replicability
- Completed a FEED and commercial feasibility study for a 25 MW P2G facility in Aylmer, Ontario
- Developing electrolysis-based projects across North America including Canada; Texas, Mid-West US, California, and Mexico
- Engaging with electrolysis, methanation, and methanol synthesis technology vendors to understand the capability and cost of rapidly developing technologies
- Working with companies with low carbon ambitions on the best use cases for hydrogen-based fuels

Project Development Model

Benefits of Clean Hydrogen-Based P2G

Utility scale grid resiliency:Operational flexibility to draw or curb power consumption

Energy transition: Pairs with solar and wind generation as an outlet for stranded or low-priced electricity coupled with energy storage applications

Net zero economy: Low-carbon fuel that can supply traditionally hard to decarbonize end markets

Carbon Dioxide: Maximize value of existing sources of carbon dioxide through utilization to make marketable clean endproducts

Project Development Framework

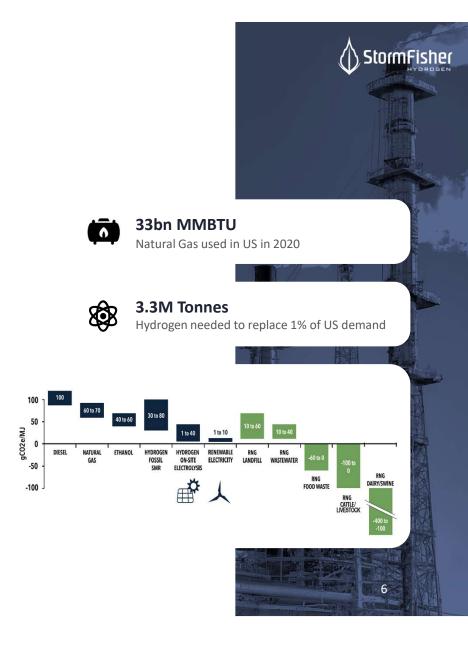
Infrastructure

- StormFisher identifies and secures optimal siting with grid connection and EcDev incentives in consideration.
- Select technology, design, and build partners.
- Draft, negotiate, and execute commercial agreements.

Construction

- StormFisher oversees construction through to successful commissioning.
- StormFisher commits to a long-term energy price and takes construction and operating risk.

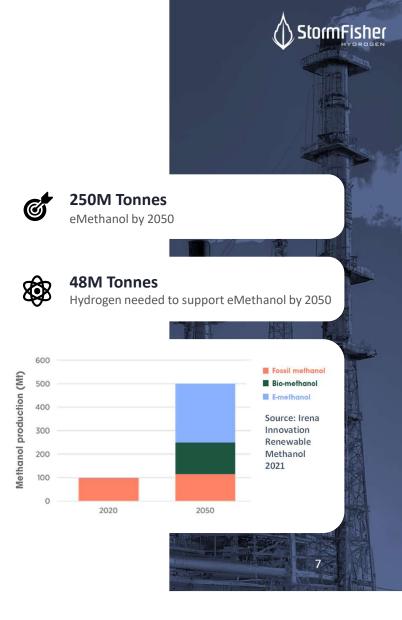
Operations



- StormFisher commits to performance-based operations to the Project.
- StormFisher will be responsible for day-to-day operations and maintenance.
- Track record of identifying and implementing process efficiencies.

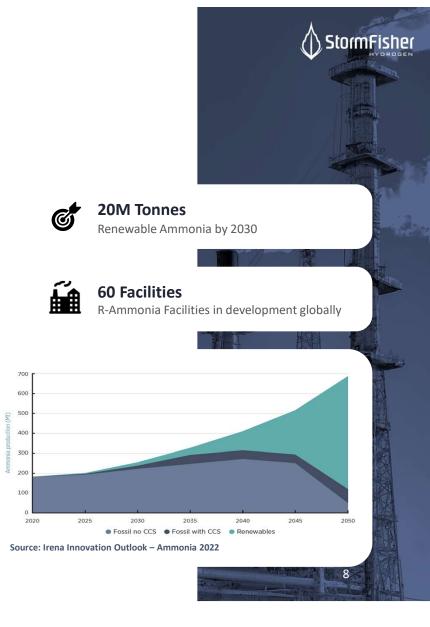
Renewable Natural Gas

RNG is molecularly identical to fossil natural gas and can be used in today's infrastructure. Clean hydrogen can be combined with carbon to produce RNG


- RNG is typically produced at small scale from surrounding waste streams. RNG from hydrogen can be produced at scale and serve to transport hydrogen.
- North American market is established with State and Provincial low carbon fuel standards creating carbon-based pricing supportive of low carbon RNG.
- Natural gas utilities are under pressure to green their systems with Canadian utilities, (FortisBC, Energir) and Northwest utilities such as PSE purchasing RNG under 20-year fixed price contracts.
- Voluntary markets are expanding with Large Multinationals and Institutions purchasing RNG under 5-10 year contracts to meet ESG requirements.
- Zero carbon RNG is sought after in the market and (prices from \$25-40/MMBTU)

eMethanol

Renewable methanol demand is outpacing supply – over 80 renewable methanol facilities have been announced to be online by 2027 to meet the demand.


- European Union's Energy Roadmap calls for GHG emission reductions of 80-95% by 2050 (32% reduction by 2030)
 - Maersk has committed to purchase 750,000 tonnes of eMethanol by 2025.
- The global methanol market size was \$28bn in 2020 and is projected to grow 5% annually to \$55bn by 2030.
- Hydrogen is a key raw material for methanol production, accounting for about 75% of the total production cost.
- Renewable methanol can be used as a fuel for transportation, especially for hard-to-abate sectors such as aviation and shipping, where electrification is not feasible, and chemicals such as ethylene, propylene, acetic acid, and formaldehyde.
- eMethanol market is nascent with pricing ranging from \$500-1,200/tonne
- Renewable bio-methanol is transacting at \$1,600/tonne, creating pricing power for eMethanol

Renewable Ammonia

Clean hydrogen is a reliable and sustainable energy feedstock with stable pricing giving operational certainty to ammonia and fertilizer producers.

- The combined capacity of all currently announced renewable ammonia projects represents around 8% of the current global ammonia production.
- Renewable ammonia is expected to be competitive with fossil-based ammonia by 2030, achieving cost parity with CCS beyond 2030.
 - IRA puts clean hydrogen in a competitive position particularly as fossil gas prices continue to increase.
- Renewable ammonia and fertilizer through clean hydrogen can significantly reduce scope 1 greenhouse gas emissions and help meet sustainability goals.
- Green ammonia to fertilizer can help meet the increasing demand for sustainably produced products, and the global need for fertilizer.

<u>info@stormfisher.com</u> www.stormfisher.com Brandon Moffatt Co-Founder bmoffatt@stormfisher.com

C: +1.519.573.8719